Raman Spectroscopic Analysis of Highly-Concentrated Antibodies under the Acid-Treated Conditions

Author:

Sato Yusui,Nagatoishi SatoruORCID,Noguchi Shintaro,Tsumoto Kouhei

Abstract

Abstract Purpose Antibody drugs are usually formulated as highly-concentrated solutions, which would easily generate aggregates, resulting in loss of efficacy. Although low pH increases the colloidal dispersion of antibodies, acid denaturation can be an issue. Therefore, knowing the physical properties at low pH under high concentration conditions is important. Methods Raman spectroscopy was used to investigate pH-induced conformational changes of antibodies at 50 mg/ml. Experiments in pH 3 to 7 were performed for human serum IgG and recombinant rituximab. Results We detected the evident changes at pH 3 in Tyr and Trp bands, which are the sensitive markers of intermolecular interactions. Thermal transition analysis over the pH range demonstrated that the thermal transition temperature (Tm) was highest at pH 3. Acid-treated and neutralized one showed higher Tm than that of pH 7, indicating that their extent of intermolecular interactions correlated with the Tm values. Onset temperature was clearly different between concentrated and diluted samples. Colloidal analyses confirmed the findings of the Raman analysis. Conclusion Our studies demonstrated the positive correlation between Raman analysis and colloidal information, validating as a method for evaluating antibody conformation associated with aggregation propensities.

Funder

The University of Tokyo

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Organic Chemistry,Pharmaceutical Science,Pharmacology,Molecular Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3