A Physiology-Based Mathematical Model to Understand Drug Delivery from Contact Lenses to the Back of the Eye

Author:

Toffoletto NadiaORCID,Saramago Benilde,Serro Ana Paula,Chauhan Anuj

Abstract

Abstract Objective Therapeutic contact lenses, able to store drug and deliver it to the eye surface in a sustained fashion, gained interest as an effective and patient-friendly alternative to eye drops. Recent animal studies also demonstrated the presence of therapeutic drug levels in the back of the eye after wearing drug-loaded contact lenses, thus opening the possibility of treating the posterior segment without need of invasive intraocular injections. The drug pathways from contact lenses to the back of the eye require further investigation. Methods A mechanistic mathematical model was developed to evaluate the drug concentration over time in the tears, sclera and choroid, retina, aqueous humor and vitreous humor after the application of a therapeutic contact lens. The main drug transport mechanisms of the eye and the barrier properties of the different tissues were included in the model. Validation was performed by comparison with experimental data in literature. Results The model predictions of drug concentration over time reflected the experimental data both in the anterior and posterior segment of the eye. The model can differentiate between contributions to transport from different pathways. Conclusions The model constitutes a first step towards the possibility of predicting the ocular drug distribution and the treatment efficacy in the early stage of contact lens development, and it may help reduce both the need for in vivo tests (with ethical and economic advantages) and the gap between the lens design and clinical application. It also allows for an improved understanding of drug transport in the eye. Graphical abstract

Funder

HORIZON EUROPE Framework Programme

Fundação para a Ciência e a Tecnologia

Universidade de Lisboa

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Organic Chemistry,Pharmaceutical Science,Pharmacology,Molecular Medicine,Biotechnology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3