1. Agresti, A.: Statistics : The Art and Science of Learning from Data. Pearson Prentice Hall, Upper Saddle River, NJ (2006).
2. Calderon, C.P., Daniels, A.L., Randolph, T.W.: Deep Convolutional Neural Network Analysis of Flow Imaging Microscopy Data to Classify Subvisible Particles in Protein Formulations. Journal of Pharmaceutical Sciences 107(4), 999–1008 (2018). https://doi.org/10.1016/j.xphs.2017.12.008.http://linkinghub.elsevier.com/retrieve/pii/S002235491730878X.
3. Cavicchi, R.E., Ripple, D.C.: Improving Diameter Accuracy for Dynamic Imaging Microscopy for Different Particle Types. Journal of Pharmaceutical Sciences 109(1), 488–495 (2020). https://doi.org/10.1016/j.xphs.2019.10.017.https://doi.org/10.1016/j.xphs.2019.10.017.
4. D’Amour, A., Heller, K., Moldovan, D., Adlam, B., Alipanahi, B., Beutel, A., Chen, C., Deaton, J., Eisenstein, J., Hoffman, M.D., Hormozdiari, F., Houlsby, N., Hou, S., Jerfel, G., Karthikesalingam, A., Lucic, M., Ma, Y., McLean, C., Mincu, D., Mitani, A., Montanari, A., Nado, Z., Natarajan, V., Nielson, C., Osborne, T.F., Raman, R., Ramasamy, K., Sayres, R., Schrouff, J., Seneviratne, M., Sequeira, S., Suresh, H., Veitch, V., Vladymyrov, M., Wang, X., Webster, K., Yadlowsky, S., Yun, T., Zhai, X., Sculley, D.: Underspecification presents challenges for credibility in modern machine learning (2020)
5. Daniels, A.L., Calderon, C.P., Randolph, T.W.: Machine learning and statistical analyses for extracting and fingerprints of antibody aggregation at container interfaces from flow microscopy images. Biotechnology and Bioengineering 117(11), 3322–3335 (2020). https://doi.org/10.1002/bit.27501.https://onlinelibrary.wiley.com/doi/abs/10.1002/bit.27501.