A Combination of Machine Learning and PBPK Modeling Approach for Pharmacokinetics Prediction of Small Molecules in Humans

Author:

Li Yuelin,Wang Zonghu,Li Yuru,Du Jiewen,Gao Xiangrui,Li Yuanpeng,Lai LipengORCID

Abstract

Abstract Purpose: Recently, there has been rapid development in model-informed drug development, which has the potential to reduce animal experiments and accelerate drug discovery. Physiologically based pharmacokinetic (PBPK) and machine learning (ML) models are commonly used in early drug discovery to predict drug properties. However, basic PBPK models require a large number of molecule-specific inputs from in vitro experiments, which hinders the efficiency and accuracy of these models. To address this issue, this paper introduces a new computational platform that combines ML and PBPK models. The platform predicts molecule PK profiles with high accuracy and without the need for experimental data. Methods: This study developed a whole-body PBPK model and ML models of plasma protein fraction unbound ($$f_{up}$$ f up ), Caco-2 cell permeability, and total plasma clearance to predict the PK of small molecules after intravenous administration. Pharmacokinetic profiles were simulated using a “bottom-up” PBPK modeling approach with ML inputs. Additionally, 40 compounds were used to evaluate the platform’s accuracy. Results: Results showed that the ML-PBPK model predicted the area under the concentration-time curve (AUC) with 65.0$$\%$$ % accuracy within a 2-fold range, which was higher than using in vitro inputs with 47.5$$\%$$ % accuracy. Conclusion: The ML-PBPK model platform provides high accuracy in prediction and reduces the number of experiments and time required compared to traditional PBPK approaches. The platform successfully predicts human PK parameters without in vitro and in vivo experiments and can potentially guide early drug discovery and development.

Publisher

Springer Science and Business Media LLC

Reference39 articles.

1. Poggesi I, Snoeys J, Van Peer A. The successes and failures of physiologically based pharmacokinetic modeling: there is room for improvement. Expert Opinion on Drug Metabolism & Toxicology. 2014;10(5):631–5. https://doi.org/10.1517/17425255.2014.888058. Accessed 2023-06-12.

2. Tylutki Z, Polak S, Wiśniowska B. Top-down, Bottom-up and Middle-out Strategies for Drug Cardiac Safety Assessment via Modeling and Simulations. Current Pharmacology Reports. 2016;2(4):171–7. https://doi.org/10.1007/s40495-016-0060-3. Accessed 2023-06-13.

3. ...Ahmad A, Pepin X, Aarons L, Wang Y, Darwich AS, Wood JM, Tannergren C, Karlsson E, Patterson C, Thörn H, Ruston L, Mattinson A, Carlert S, Berg S, Murphy D, Engman H, Laru J, Barker R, Flanagan T, Abrahamsson B, Budhdeo S, Franek F, Moir A, Hanisch G, Pathak SM, Turner D, Jamei M, Brown J, Good D, Vaidhyanathan S, Jackson C, Nicolas O, Beilles S, Nguefack JF, Louit G, Henrion L, Ollier C, Boulu L, Xu C, Heimbach T, Ren X, Lin W, Nguyen-Trung AT, Zhang J, He H, Wu F, Bolger MB, Mullin JM, Van Osdol B, Szeto K, Korjamo T, Pappinen S, Tuunainen J, Zhu W, Xia B, Daublain P, Wong S, Varma MVS, Modi S, Schäfer KJ, Schmid K, Lloyd R, Patel A, Tistaert C, Bevernage J, Nguyen MA, Lindley D, Carr R, Rostami-Hodjegan A. IMI-Oral biopharmaceutics tools project-Evaluation of bottom-up PBPK prediction success part 4: Prediction accuracy and software comparisons with improved data and modelling strategies. Eur J Pharm Biopharm. 2020;156:50–63. https://doi.org/10.1016/j.ejpb.2020.08.006. Accessed 2023-06-12.

4. Naga D, Parrott N, Ecker GF, Olivares-Morales A. Evaluation of the Success of High-Throughput Physiologically Based Pharmacokinetic (HT-PBPK) Modeling Predictions to Inform Early Drug Discovery. Mol Pharm. 2022;19(7):2203–16. https://doi.org/10.1021/acs.molpharmaceut.2c00040. Accessed 2023-06-12.

5. Antontsev V, Jagarapu A, Bundey Y, Hou H, Khotimchenko M, Walsh J, Varshney J. A hybrid modeling approach for assessing mechanistic models of small molecule partitioning in vivo using a machine learning-integrated modeling platform. Sci Rep. 2021;11(1):11143. https://doi.org/10.1038/s41598-021-90637-1. Accessed 2023-06-12.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3