On the involvement of cyclic AMP and extracellular Ca2+ in the regulation of hormone release from rat pituitary tumour (GH3) cells in culture

Author:

Sletholt Kjersti12,Haug Egil3,Gautvik Kaare M.2

Affiliation:

1. Department of Physiology, The Norwegian College of Veterinary Medicine, PO Box 8146 Dep., 0033 Oslo 1, Norway

2. Institute of Medical Biochemistry, University of Oslo, PO Box 1112 Blindern, 0317 Oslo 3, Norway

3. Hormone Laboratory, Aker Hospital, 0514, Oslo 5 Norway

Abstract

Thyroliberin (TRH), dibutyryl cyclic AMP (db-cAMP), and 3-isobutyl-l-methylxanthine (MIX) had a stimulatory effect on prolactin (PRL) and growth hormone (GH) release from GH 3 cells. Half-maximal and maximal effects were observed for TRH at 2.5 nM and 10 nM; for db-cAMP at 0.6 mM and 5 mM, respectively. MIX (0.1 mM-1 mM) induced a dose-dependent accumulation of cellular cyclic AMP, while the hormone release was already maximally stimulated at 0.1 mM MIX. The maximal effects on hormone release of TRH and db-cAMP, but not of TRH and MIX, were additive. The Ca2+ channel blockers Co2+ (5 mM) and verapamil (100 μM) and the Ca2+ chelator EGTA (4 mM) abolished the stimulatory effect of TRH (1 μM) on hormone release. Co2+ and verapamil, but not EGTA, inhibited the stimulatory effect of db-cAMP (5 mM) on hormone release. The inhibitory effects of Co2+ and verapamil on GH release were counteracted by the combination of TRH and db-cAMP. For PRL release Co2+, but not verapamil, was able to inhibit the combined action of TRH and db-cAMP. Co2+, verapamil, and EGTA eliminated the stimulatory effect of MIX (1 mM) on PRL release while only Co2+ and EGTA affected the GH release. Hormone release in the presence of MIX plus verapamil or EGTA, but not Co2+, was increased by TRH. The calmodulin antagonist trifluoperazine (TFP) at 30 μM inhibited basal hormone release and hormone release stimulated by TRH (1 μM), db-cAMP (5 mM), and MIX (1 mM). The Ca2+ ionophore A23187 (5 μM) had a stimulatory effect on basal hormone release which was abolished by 30 μM TFP.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3