Non-Local Formulation of Heat Transfer with Phase Change in Domains with Spherical and Axial Symmetries

Author:

Nikolaev Petr,Jivkov Andrey P.,Margetts Lee,Sedighi Majid

Abstract

AbstractDescribing heat transfer in domains with strong non-linearities and discontinuities, e.g. propagating fronts between different phases, or growing cracks, is a challenge for classical approaches, where conservation laws are formulated as partial differential equations subsequently solved by discretisation methods such as the finite element method (FEM). An alternative approach for such problems is based on the non-local formulation; a prominent example is peridynamics (PD). Its numerical implementation however demands substantial computational resources for problems of practical interest. In many engineering situations, the problems of interest may be considered with either axial or spherical symmetry. Specialising the non-local description to such situations would decrease the number of PD particles by several orders of magnitude with proportional decrease of the computational time, allowing for analyses of larger domains or with higher resolution as required. This work addresses the need for specialisation by developing bond-based peridynamic formulations for physical problems with axial and spherical symmetries. The development is focused on the problem of heat transfer with phase change. The accuracy of the new non-local description is verified by comparing the computational results for several test problems with analytical solutions where available, or with numerical solutions by the finite element method.

Funder

University of Manchester

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Materials Science (miscellaneous),Mechanics of Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Peridynamic analysis of thermal behaviour of PCM composites for heat storage;Computer Methods in Applied Mechanics and Engineering;2024-05

2. Modelling artificial ground freezing subjected to high velocity seepage;International Journal of Heat and Mass Transfer;2024-04

3. Non-local modelling of freezing and thawing of unsaturated soils;Advances in Water Resources;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3