Contour Method with Uncertainty Quantification: A Robust and Optimised Framework via Gaussian Process Regression

Author:

Tognan A.,Laurenti L.,Salvati E.ORCID

Abstract

Abstract Background Over the past 20 years, the Contour Method (CM) has been extensively implemented to evaluate residual stress at the macro scale, especially in products where material processing is involved. Despite this, insufficient attention has been devoted to addressing the problems of input data filtering and residual stress uncertainties quantification. Objective The present research aims to tackle this fundamental issue by combining Gaussian Process Regression (GPR) with the CM. Thanks to its stochastic nature, GPR associates a Gaussian distribution with every subset of data, thus holding the potential to model the inherent uncertainty of the input data set and to link it to the measurements and the surface roughness. Methods The conventional and unrobust spline smoothing process is effectively replaced by the GPR which is capable of providing uncertainties over the fitting. Indeed, the GPR stochastically and automatically identifies the fitting parameter, thus making the experimental data post-processing practically unaffected by the user’s experience. Moreover, the final residual stress uncertainty is efficiently evaluated through an optimised Monte Carlo Finite Element simulation, by appropriately perturbing the input dataset according to the GPR predictions. Results The simulation is globally optimised exploiting numerical techniques, such as LU-factorisation, and developing an on-line convergence criterion. In order to show the capability of the presented approach, a Friction Stir Welded plate is considered as a case study. For this problem, it was shown how residual stress and its uncertainty can be accurately evaluated in approximately 15 minutes using a low-budget personal computer. Conclusions The method developed herein overcomes the key limitation of the standard spline smoothing approach and this provides a robust and optimised computational framework for routinely evaluating the residual stress and its associated uncertainty. The implications are very significant as the evaluation accuracy of the CM is now taken to a higher level.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3