Experimental Examination of Additively Manufactured Patterns on Structural Nuclear Materials for Digital Image Correlation Strain Measurements

Author:

Novich K.A.ORCID,Phero T.L.,Cole S.E.,Greseth C.M.,McMurtrey M.D.,Estrada D.,Jaques B.J.

Abstract

Abstract Background There are a limited number of commercially available sensors for monitoring the deformation of materials in-situ during harsh environment applications, such as those found in the nuclear and aerospace industries. Such sensing devices, including weldable strain gauges, extensometers, and linear variable differential transformers, can be destructive to material surfaces being investigated and typically require relatively large surface areas to attach (> 10 mm in length). Digital image correlation (DIC) is a viable, non-contact alternative to in-situ strain deformation. However, it often requires implementing artificial patterns using splattering techniques, which are difficult to reproduce. Objective Additive manufacturing capabilities offer consistent patterns using programmable fabrication methods. Methods In this work, a variety of small-scale periodic patterns with different geometries were printed directly on structural nuclear materials (i.e., stainless steel and aluminum tensile specimens) using an aerosol jet printer (AJP). Unlike other additive manufacturing techniques, AJP offers the advantage of materials selection. DIC was used to track and correlate strain to alternative measurement methods during cyclic loading, and tensile tests (up to 1100 µɛ) at room temperature. Results The results confirmed AJP has better control of pattern parameters for small fields of view and facilitate the ability of DIC algorithms to adequately process patterns with periodicity. More specifically, the printed 100 μm spaced dot and 150 μm spaced line patterns provided accurate measurements with a maximum error of less than 2% and 4% on aluminum samples when compared to an extensometer and commercially available strain gauges. Conclusion Our results highlight a new pattern fabrication technique that is form factor friendly for digital image correlation in nuclear applications.

Funder

Office of Nuclear Energy

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3