Efficient Experimental and Data-Centered Workflow for Microstructure-Based Fatigue Data

Author:

Durmaz A. R.ORCID,Hadzic N.,Straub T.,Eberl C.,Gumbsch P.

Abstract

Abstract Background Early fatigue mechanisms for various materials are yet to be unveiled for the (very) high-cycle fatigue (VHCF) regime. This can be ascribed to a lack of available data capturing initial fatigue damage evolution, which continues to adversely affect data scientists and computational modeling experts attempting to derive microstructural dependencies from small sample size data and incomplete feature representations. Objective The aim of this work is to address this lack and to drive the digital transformation of materials such that future virtual component design can be rendered more reliable and more efficient. Achieving this relies on fatigue models that comprehensively capture all relevant dependencies. Methods To this end, this work proposes a combined experimental and data post-processing workflow to establish multimodal fatigue crack initiation and propagation data sets efficiently. It evolves around fatigue testing of mesoscale specimens to increase damage detection sensitivity, data fusion through multimodal registration to address data heterogeneity, and image-based data-driven damage localization. Results A workflow with a high degree of automation is established, that links large distortion-corrected microstructure data with damage localization and evolution kinetics. The workflow enables cycling up to the VHCF regime in comparatively short time spans, while maintaining unprecedented time resolution of damage evolution. Resulting data sets capture the interaction of damage with microstructural features and hold the potential to unravel a mechanistic understanding. Conclusions The proposed workflow lays the foundation for future data mining and data-driven modeling of microstructural fatigue by providing statistically meaningful data sets extendable to a wide range of materials.

Funder

Bosch-Forschungsstiftung

Fraunhofer Institute for Mechanics of Materials (IWM Fraunhofer)

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering

Reference56 articles.

1. Eickenbusch H, Krauss O (2014) Werkstoffinnovationen für nachhaltige Mobilität und Energieversorgung. Verein Deutscher Ingenieure e. V, Technical report

2. National Science and Technology Council (US) (2011) Materials genome initiative for global competitiveness. Executive Office of the President, National Science and Technology Council

3. O’Meara S (2019) Materials science is helping to transform China into a high-tech economy. Nature 567(7748):S1

4. Innovations-Plattform MaterialDigital. https://www.materialdigital.de/, visted 2021-05-09. 

5. Pierson K, Rahman A, Spear AD (2019) Predicting Microstructure-Sensitive Fatigue-Crack Path in 3D Using a Machine Learning Framework. Jom 71(8):2680–2694

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3