Uphill Quenching to Reduce Residual Stress in Aluminium Alloy 7449 Hollow Structures

Author:

Robinson J. S.ORCID,O’ Donovan A.ORCID,Wimpory R. C.ORCID

Abstract

Abstract Background Uphill quenching (UHQ) of heat treatable aluminium alloy components is a long established but rarely practiced or investigated method of reducing residual stresses. The efficacy of the technique has not been quantified on thin walled structures before and this investigation will address that deficiency. Objective To quantify the impact of uphill quenching on thin walled structure with regards to residual stress and warpage, and compare and contrast to both quenching into cold water and a 30% polyalkylene glycol (PAG) solution. Methods Rectilinear hollow boxes were made from the very high strength aerospace aluminium alloy 7449. These were heat treated and aged using a variety of processing methods including uphill quenching from -196 °C to 100 °C using steam. Residual stresses have been characterised using neutron and x-ray diffraction. Results Compared to conventional quenching into cold water, both PAG and UHQ are shown to significantly lower the residual stresses. However, while PAG quenching results in a large uniform reduction in both residual stress and warpage, UHQ is much more localised and limited to regions adjacent to direct steam impingement. These regions are also warped. The depth of penetration of the stress relief during UHQ is shown to be 5 mm. Conclusions While uphill quenching is shown to be capable of locally stress relieving an aluminium alloy, it is far less effective compared to PAG quenching.

Funder

University of Limerick

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3