Reaching Large Strains During Simple Shear Experiments Thanks to Sequential Re-Machining of the Free Edges

Author:

Colon X.,Galpin B.,Mahéo L.,Grolleau V.ORCID

Abstract

Abstract Background The simple shear experiment is widely used for the calibration of plasticity models due to straightforward post processing. The specimen can be as simple as a rectangular strip of sheet metal, but the maximum strain is limited by early initiation of fractures from the free edges. Avoiding this drawback has been a major motivation for the development of new specimens with optimized edge geometries or the in-plane torsion test, but at the cost of a more complex analysis of the test and often a reduction of the gauge section. Objective The objective of the present work is to overcome the initiation of fracture from the free edges during simple shear experiments. Our goal is to double the achievable maximum strain, while keeping the size of the specimen and the post processing simplicity of a standard simple shear test. Methods A sequential single shear test is proposed, consisting of several two steps sequences on a notched geometry. First, an interrupted shear test is performed up to a specified displacement value. Then, the damaged free edges of the specimen are removed through milling. The specimen is then ready for the following sequence of shear and re-machining. Results Experiments are performed on three engineering materials, with up to five loading-machining sequences. The maximum attained effective strain is up to two times the one reached during a monotonic experiment. Numerical simulations are used to validate the shear stress and strain calculations from experimental measurements. Practical recommendations are derived for the choice of the displacement step size and Digital Image Correlation analysis. Conclusion It is found that the maximum strain attained before the undesired failure of the specimen during simple shear test can be substantially extended through repeated re-machining of the specimen boundaries, enabling behavior identification at larger strains.

Funder

Région Bretagne

Swiss Federal Institute of Technology Zurich

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3