In Situ Mechanical Loading and Neutron Bragg-edge Imaging, Applied to Polygranular Graphite On IMAT@ISIS

Author:

Zillhardt T. A. C.ORCID,Burca G.,Liu D.,Marrow T. J.

Abstract

Abstract Background Bragg edge imaging have seen significant developments in the last decade with the availability of new time-resolved detectors, however, there have been no studies of changes in local coherent scattering from grain reorientation and deformation with load. Such damage accommodation mechanism may occur in (quasi)-brittle materials. Objective We developed a novel method using in-situ Bragg imaging at the ISIS spallation neutron and muon source on the IMAT (Imaging and MATerials science and engineering) instrument using an energy-resolved detector setup. We collected and analysed data of a proof-of-concept experiment demonstrating the use of the method. Methods We have developed a loading apparatus that addresses the constraints posed by Bragg imaging, allowing us to resolve features in the material microstructure. We use energy-resolved neutron imaging to obtain images in energy bins and we have developed a set of codes to register and correlate these images, as well as detect changes in local coherent scattering, in situ. Results Preliminary results from this method on Gilsocarbon nuclear graphite allow qualitative observation of local changes in Bragg contrast, which may be due to deformation or grain reorientation. Conclusions We have demonstrated that we can track changes in local coherent scattering under mechanical load, with sufficient resolution to track features with a size above 100 microns. This method, apparatus and accompanying codes may be used on the IMAT instruments by users interested to better understand deformation in their materials.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3