Abstract
Abstract
Background
Polyvinyl chloride (PVC) foams are widely used in crashworthiness and energy absorption applications due to their low density and the capability of crushing up to large deformations with limited loads. This property is due to their particular constitutive behavior: the stress-strain curve is characterized, after an initial yield or peak stress, by a relevant plateau region followed by a steep increase due to foam densification. Furthermore, the mechanical response of PVC foam is strongly strain rate dependent.
Objective
This work aims to characterize the mechanical behavior of PVC foams and to develop a complete constitutive model for impact and energy absorption applications.
Methods
Compressive tests are carried out at different speeds on PVC foam samples having different relative densities. Quasi-static and intermediate strain rate tests are performed by a pneumatic machine, while high strain rate tests are conducted by means of a Split Hopkinson Pressure Bar. The uniaxial stress-strain curves are used to calibrate the visco-elastic and visco-plastic constitutive model. In particular, the material behavior is divided into two parallel branches: the former describes the elasto-plastic behavior, while the latter accounts for the visco-elastic one; the plastic branch also includes a multiplicative term accounting for the strain rate sensitivity of the base material.
Results
The tests highlight a strong compressibility of the foam with negligible lateral expansion. The energy absorption efficiency, as well as the densification strain, is evaluated. The material model is also implemented in Finite Element (FE) simulations of puncture impact tests, validating the results of the calibration procedure.
Conclusions
The calibration of the visco-elasto-plastic material model offers a physically consistent identification of the constitutive response of the PVC foams, showing an effective characterization of the impact behavior of the material.
Funder
Università Politecnica delle Marche
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Aerospace Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献