Abstract
Abstract
Background
The continuous development of new multiphase alloys with improved mechanical properties requires quantitative microstructure-resolved observation of the nanoscale deformation mechanisms at, e.g., multiphase interfaces. This calls for a combinatory approach beyond advanced testing methods such as microscale strain mapping on bulk material and micrometer sized deformation tests of single grains.
Objective
We propose a nanomechanical testing framework that has been carefully designed to integrate several state-of-the-art testing and characterization methods.
Methods
(i) Well-defined nano-tensile testing of carefully selected and isolated multiphase specimens, (ii) front&rear-sided SEM-EBSD microstructural characterization combined with front&rear-sided in-situ SEM-DIC testing at very high resolution enabled by a recently developed InSn nano-DIC speckle pattern, (iii) optimized DIC strain mapping aided by application of SEM scanning artefact correction and DIC deconvolution for improved spatial resolution, (iv) a novel microstructure-to-strain alignment framework to deliver front&rear-sided, nanoscale, microstructure-resolved strain fields, and (v) direct comparison of microstructure, strain and SEM-BSE damage maps in the deformed configuration.
Results
Demonstration on a micrometer-sized dual-phase steel specimen, containing an incompatible ferrite-martensite interface, shows how the nanoscale deformation mechanisms can be unraveled. Discrete lath-boundary-aligned martensite strain localizations transit over the interface into diffuse ferrite plasticity, revealed by the nanoscale front&rear-sided microstructure-to-strain alignment and optimization of DIC correlations.
Conclusions
The proposed testing and alignment framework yields front&rear-sided aligned microstructure and strain fields providing 3D interpretation of the deformations and opening new opportunities for unprecedented validation of advanced multiphase simulations.
Funder
Stichting voor de Technische Wetenschappen
Agence Nationale de la Recherche
Eindhoven University of Technology
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Aerospace Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献