Abstract
Abstract
Background
A variety of imaging methods are available to obtain kinematic data at an interface, with a widely varying range of spatial and temporal resolution. These methods require a trade-off between imaging rate and resolution.
Objective
A deep learning framework trained on synchronous profilometry data acquired using two imaging modalities at two different spatial resolutions to enhance spatial resolution while maintaining temporal resolution is desired.
Methods
Fizeau interferometry (FIF) and frustrated total internal reflection (FTIR) are used to overcome the resolution-rate trade-off via a deep learning framework. The FTIR imaging data are recorded at high resolution, while the FIF imaging data are recorded with a lesser resolved, larger field of view. We apply a deep learning framework using a multi-layer convolutional neural network to enhance the FIF image resolution.
Results
With the deep learning framework, we achieve the high spatial resolution of measurements obtained by FTIR imaging in all three dimensions from the lower resolution FIF data. A high-order overset technique ultimately yields full up-scaled images from the network outputs without losing precision. The accuracy of the super-resolved image is evaluated using test data.
Conclusions
This hybrid framework, called HOTNNET, is implemented in its entirety on high-speed imaging profilometry data acquired in the study of droplet impacts on a smooth, solid surface, and is used to recover full, high-resolution images at high rates by unwrapping the phase of the interferometry. This framework can be readily adapted to other paired datasets by retraining the network on the novel data.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Aerospace Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献