Thermoelastic Stress Analysis in the Presence of Biaxial Stresses in Titanium: Effect of the Mean Stress on Errors in Stress Evaluation

Author:

Palumbo D.,De Finis R.ORCID

Abstract

Abstract Background Thermoelastic Stress Analysis (TSA) is a contactless technique capable of estimating superficial stresses on components subjected to dynamic loads. Surface stresses can be obtained by means of calibration methods that require the assessment of the thermoelastic constants. However, these methods can lead to errors in stress evaluation in those materials where the effect of the mean stress on the thermoelastic signal cannot be neglected (e.g., titanium). Objective The aim is the development of an analytic formulation of error made in first stress invariant amplitude evaluation for a biaxial stress state, when neglecting mean stress effect. Methods By considering the general theory of thermoelastic stress analysis accounting for the mean stress effect, the formulation of the thermoelastic effect in the presence of a biaxial stress state was obtained. The results were compared to those obtained by a numerical simulation and the proposed formulation has been validated for titanium by means of experimental tests. Results Firstly, the new formulation of thermoelastic temperature variations accounting for mean stress effect in presence of a biaxial stress state was provided. Secondly, an error analysis provided an analytical formulation for the error made in case mean stress effect is neglected for different case studies. Conclusions The error in stress evaluation can be considered as the error originating from the use of an incorrect calibration formula (traditional one)”. The new analytical formulation accounting for the general theory of thermoelastic stress analysis allows to account for the mean stress on titanium in the presence of a uniaxial and biaxial stress states and to evaluate the error made in neglecting such a second order effect when using TSA.

Funder

Università del Salento

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3