Recognising small colour changes with unsupervised learning, comparison of methods

Author:

Isohanni JariORCID

Abstract

AbstractColour differentiation is crucial in machine learning and computer vision. It is often used when identifying items and objects based on distinct colours. While common colours like blue, red, green, and yellow are easily distinguishable, some applications require recognising subtle colour variations. Such demands arise in sectors like agriculture, printing, healthcare, and packaging. This research employs prevalent unsupervised learning techniques to detect printed colours on paper, focusing on CMYK ink (saturation) levels necessary for recognition against a white background. The aim is to assess whether unsupervised clustering can identify colours within QR-Codes. One use-case for this research is usage of functional inks, ones that change colour based on environmental factors. Within QR-Codes they serve as low-cost IoT sensors. Results of this research indicate that K-means, C-means, Gaussian Mixture Model (GMM), Hierarchical clustering, and Spectral clustering perform well in recognising colour differences when CMYK saturation is 20% or higher in at least one channel. K-means stands out when saturation drops below 10%, although its accuracy diminishes significantly, especially for yellow or magenta channels. A saturation of at least 10% in one CMYK channel is needed for reliable colour detection using unsupervised learning. To handle ink densities below 5%, further research or alternative unsupervised methods may be necessary.

Funder

Keski-Pohjanmaan Rahasto

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3