A novel semi supervised approach for text classification

Author:

Barman Debaditya,Chowdhury NirmalyaORCID

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Applied Mathematics,Artificial Intelligence,Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications,Information Systems

Reference48 articles.

1. Torkkola K (2004) Discriminative features for text document classification. Formal Pattern Anal Appl 6(4):301–308

2. Sebastiani F (2002) Machine learning in automated text categorization. ACM Comput Surv (CSUR). 34(1):1–47

3. Han EHS, Karypis G (2000) Centroid-based document classification: analysis and experimental results. In: European conference on principles of data mining and knowledge discovery. Springer, Berlin, pp 424–431

4. Basili R, Moschitti A (2001) A robust model for intelligent text classification. In: Proceedings of the 13th international conference on tools with artificial intelligence. IEEE, pp 265–272

5. Ruiz ME, Srinivasan P (1999) Hierarchical neural networks for text categorization (poster abstract). In: Proceedings of the 22nd annual international ACM SIGIR conference on research and development in information retrieval. ACM, pp 281–282

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Roadmap on Developing a Taxonomy for Text Data Mining;2024 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream);2024-04-25

2. Exploring the Theoretical Dimensions and Intricate Behaviors of Large Language Models and their Multimodal Counterparts;2024 IEEE 13th International Conference on Communication Systems and Network Technologies (CSNT);2024-04-06

3. Handwritten Digits Recognition using Machine and Deep Learning;2024 11th International Conference on Computing for Sustainable Global Development (INDIACom);2024-02-28

4. Leveraging attention layer in improving deep learning models performance for sentiment analysis;International Journal of Information Technology;2023-10-28

5. Semi-supervised learning models for document classification: A systematic review and meta-analysis;Inteligencia Artificial;2023-06-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3