A proactive grey wolf optimization for improving bioinformatic systems with high dimensional data

Author:

Alsaeedi Ali Hakem,Al-Shammary DhiahORCID,Hadi Suha Mohammed,Ahmed Khandakar,Ibaida Ayman,AlKhazraji Nooruldeen

Abstract

AbstractThis paper introduces a new methodology for optimization problems, combining the Grey Wolf Optimizer (GWO) with Simi-stochastic search processes. Intelligent optimizations represent an advanced approach in machine learning and computer applications, aiming to reduce the number of features used in the classification process. Optimizing bioinformatics datasets is crucial for information systems that classify data for intelligent tasks. The proposed A-Proactive Grey Wolf Optimization (A-GWO) solves stagnation in GWO by applying a dual search with a Simi-stochastic search. This target is achieved by distributing the population into two groups using a different search technique. The model's performance is evaluated using two benchmarks: the Evolutionary Computation Benchmark (CEC 2005) and seven popular biological datasets. A-GWO demonstrates highly improved efficiency in comparision to the original GWO and Particle Swarm Optimization (PSO). Specifically, it enhances exploration in 66% of CEC functions and achieves high accuracy in 70% of biological datasets.

Funder

Victoria University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3