Evolving continuous optimisers from scratch

Author:

Lones Michael A.ORCID

Abstract

AbstractThis work uses genetic programming to explore the space of continuous optimisers, with the goal of discovering novel ways of doing optimisation. In order to keep the search space broad, the optimisers are evolved from scratch using Push, a Turing-complete, general-purpose, language. The resulting optimisers are found to be diverse, and explore their optimisation landscapes using a variety of interesting, and sometimes unusual, strategies. Significantly, when applied to problems that were not seen during training, many of the evolved optimisers generalise well, and often outperform existing optimisers. This supports the idea that novel and effective forms of optimisation can be discovered in an automated manner. This paper also shows that pools of evolved optimisers can be hybridised to further increase their generality, leading to optimisers that perform robustly over a broad variety of problem types and sizes.

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Hardware and Architecture,Theoretical Computer Science,Software

Reference51 articles.

1. M. Andrychowicz, M. Denil, S. Gomez, M.W. Hoffman, D. Pfau, T. Schaul, B. Shillingford, N. De Freitas, Learning to learn by gradient descent by gradient descent. In: NIPS’16: Proceedings of the 30th International Conference on Neural Information Processing Systems, pp. 3988–3996 (2016)

2. J. de Armas, E. Lalla-Ruiz, S.L. Tilahun, S. Voß, Similarity in metaheuristics: a gentle step towards a comparison methodology. Nat. Compu. (2021). https://doi.org/10.1007/s11047-020-09837-9

3. A. Auger, N. Hansen, A restart CMA evolution strategy with increasing population size. In: Proceedings of the IEEE Congress on Evolutionary Computation, IEEE CEC ’05, vol. 2, pp. 1769–1776. IEEE (2005)

4. C. Blum, G. Ochoa, A comparative analysis of two matheuristics by means of merged local optima networks. Eur. J. Oper. Res. 290(1), 36–56 (2021)

5. C. Blum, G.R. Raidl, Hybrid Metaheuristics: Powerful Tools for Optimization (Springer, Berlin, 2016)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Designing Black-Box Optimizers with PushGP;Proceedings of the Genetic and Evolutionary Computation Conference Companion;2024-07-14

2. GRAHF: A Hyper-Heuristic Framework for Evolving Heterogeneous Island Model Topologies;Proceedings of the Genetic and Evolutionary Computation Conference;2024-07-14

3. Biological insights on grammar-structured mutations improve fitness and diversity;Proceedings of the Genetic and Evolutionary Computation Conference;2023-07-12

4. MOAZ: A Multi-Objective AutoML-Zero Framework;Proceedings of the Genetic and Evolutionary Computation Conference;2023-07-12

5. Why functional program synthesis matters (in the realm of genetic programming);Proceedings of the Genetic and Evolutionary Computation Conference Companion;2022-07-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3