Denoising autoencoder genetic programming: strategies to control exploration and exploitation in search

Author:

Wittenberg David,Rothlauf Franz,Gagné Christian

Abstract

AbstractDenoising autoencoder genetic programming (DAE-GP) is a novel neural network-based estimation of distribution genetic programming approach that uses denoising autoencoder long short-term memory networks as a probabilistic model to replace the standard mutation and recombination operators of genetic programming. At each generation, the idea is to capture promising properties of the parent population in a probabilistic model and to use corruption to transfer variations of these properties to the offspring. This work studies the influence of corruption and sampling steps on search. Corruption partially mutates candidate solutions that are used as input to the model, whereas the number of sampling steps defines how often we re-use the output during model sampling as input to the model. We study the generalization of the royal tree problem, the Airfoil problem, and the Pagie-1 problem, and find that both corruption strength and the number of sampling steps influence exploration and exploitation in search and affect performance: exploration increases with stronger corruption and lower number of sampling steps. The results indicate that both corruption and sampling steps are key to the success of the DAE-GP: it permits us to balance the exploration and exploitation behavior in search, resulting in an improved search quality. However, also selection is important for exploration and exploitation and should be chosen wisely.

Funder

Deutscher Akademischer Austauschdienst

Interdisciplinary Public Policy Mainz

Johannes Gutenberg-Universität Mainz

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Hardware and Architecture,Theoretical Computer Science,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3