A survey on dynamic populations in bio-inspired algorithms

Author:

Farinati Davide,Vanneschi Leonardo

Abstract

AbstractPopulation-Based Bio-Inspired Algorithms (PBBIAs) are computational methods that simulate natural biological processes, such as evolution or social behaviors, to solve optimization problems. Traditionally, PBBIAs use a population of static size, set beforehand through a specific parameter. Nevertheless, for several decades now, the idea of employing populations of dynamic size, capable of adjusting during the course of a single run, has gained ground. Various methods have been introduced, ranging from simpler ones that use a predefined function to determine the population size variation, to more sophisticated methods where the population size in different phases of the evolutionary process depends on the dynamics of the evolution itself and events occurring within the population during the run. The common underlying idea in many of these approaches, is similar: to save a significant amount of computational effort in phases where the evolution is functioning well, and therefore a large population is not needed. This allows for reusing the previously saved computational effort when optimization becomes more challenging, and hence a greater computational effort is required. Numerous past contributions have demonstrated a notable advantage of using dynamically sized populations, often resulting in comparable results to those obtained by the standard PBBIAs but with a significant saving of computational effort. However, despite the numerous successes that have been presented, to date, there is still no comprehensive collection of past contributions on the use of dynamic populations that allows for their categorization and critical analysis. This article aims to bridge this gap by presenting a systematic literature review regarding the use of dynamic populations in PBBIAs, as well as identifying gaps in the research that can lead the path to future works.

Funder

FCT

Universidade Nova de Lisboa

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3