1. D. Amodei, C. Olah, J. Steinhardt, P.F. Christiano, Schulman, J., Mané, D.: Concrete problems in AI safety. CoRR arxiv:1606.06565 (2016)
2. L. Cazenille, Qdpy: A python framework for quality-diversity. https://gitlab.com/leo.cazenille/qdpy (2018)
3. P. Chrabaszcz, I. Loshchilov, F. Hutter, Back to basics: benchmarking canonical evolution strategies for playing Atari, in Proceedings of the 27th International Joint Conference on Artificial Intelligence, IJCAI’18, pp. 1419–1426. AAAI Press (2018)
4. E. Conti, V. Madhavan, F.P. Such, J. Lehman, K.O. Stanley, J. Clune, Improving exploration in evolution strategies for deep reinforcement learning via a population of novelty-seeking agents. CoRR arxiv:1712.06560 (2017)
5. P.C. Dario Amodei, A. Ray, Learning from human preferences (2017). https://blog.openai.com/deep-reinforcement-learning-from-human-preferences/