Assessing large landscape patterns of potential fire connectivity using circuit methods

Author:

Buchholtz Erin K.ORCID,Kreitler JasonORCID,Shinneman Douglas J.ORCID,Crist MicheleORCID,Heinrichs JulieORCID

Abstract

Abstract Context Minimizing negative impacts of wildfire is a major societal objective in fire-prone landscapes. Models of fire connectivity can aid in understanding and managing wildfires by analyzing potential fire spread and conductance patterns. We define ‘fire connectivity’ as the landscape’s capacity to facilitate fire transmission from one point on the landscape to another. Objectives Our objective was to develop an approach for modeling fire connectivity patterns representing potential fire spread and relative flow across a broad landscape extent, particularly in the management-relevant context of fuel breaks. Methods We applied an omnidirectional circuit theory algorithm to model fire connectivity in the Great Basin of the western United States. We used predicted rates of fire spread to approximate conductance and calculated current densities to identify connections among areas with high spread rates. We compared existing and planned fuel breaks with fire connectivity patterns. Results Fire connectivity and relative flow outputs were characterized by spatial heterogeneity in the landscape’s capacity to transmit fire. We found that existing fuel break networks were denser in areas with relatively diffuse and impeded flow patterns, rather than in locations with channelized flow. Conclusions This approach could be paired with traditional fire behavior and risk analyses to better understand wildfire spread as well as direct strategic placement of individual fuel breaks within larger networks to constrain fire spread. Thus, our findings may offer local- to landscape-level support for management actions that aim to disrupt fire spread and mitigate the costs of fire on the landscape.

Publisher

Springer Science and Business Media LLC

Subject

Nature and Landscape Conservation,Ecology,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3