Cumulative effects of infrastructure and human disturbance: a case study with reindeer

Author:

Eftestøl Sindre,Tsegaye DiressORCID,Flydal Kjetil,Colman Jonathan E.

Abstract

Abstract Context Within Rangifer ranges, many studies focus on expanding infrastructure and human activity negatively influencing habitat use. Little documentation exists on how disturbances act in synergy (i.e. cumulative effects), nor methods to test such effects. Objectives (1) Investigate how cumulative disturbance at different distances affects reindeer habitat use and (2) at what disturbance levels and distances loss of habitat functionality occurs. Methods Disturbance intensity levels for trails and infrastructure were based on expected amount of human activity, on a scale from 1 to 6. To test cumulative disturbance, we adapted the multi-grain method and summed-up disturbance intensity levels within “disturbance distance intervals” (0–0.25, 0.25–1, 1–2 km, etc. instead of 0–0.25, 0–1, 0–2 km, etc.), and tested reindeers’ avoidance using GPS data for 2011–2018. Results We found decreased habitat use within 0.25 km with increasing cumulative disturbance for snow free and winter seasons. For spring, a similar effect occurred up to 1 km. Reductions in use in areas with highest cumulative disturbance within these zones were between 92 and 98%. Strongest avoidance during spring supports previous studies. Comparatively, the multi-grain approach showed negative effects up to 3 km. Conclusions Our approach provides novel results and precisely estimates where cumulative effects actually occur. Reindeer in our study tolerate low intensities of human disturbance, while further increase in disturbance intensity reduces habitat functionality. We suggest clustering future human developments within areas of high disturbance, i.e. where functional habitat use is already lost or highly reduced. Our method can be used for other areas and species.

Funder

Norges Forskningsråd

The Norwegian Water Resources and Energy Directorate

University of Oslo

Publisher

Springer Science and Business Media LLC

Subject

Nature and Landscape Conservation,Ecology,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3