Landscape configuration and storm characteristics drive spatial patterns of wind disturbance in boreal forest landscapes

Author:

Kulha NikoORCID,Heikkinen JuhaORCID,Holder JonathanORCID,Honkaniemi JuhaORCID,Kuronen MikkoORCID,Laapas MikkoORCID,Suvanto SusanneORCID,Peltoniemi MikkoORCID

Abstract

Abstract Context Wind is an important disturbance in circumboreal forests, and its frequency and severity may change with climate change, highlighting the need to understand the drivers of wind disturbance. Currently, how landscape configuration drives wind disturbance is poorly understood. Objectives We investigated whether and how landscape configuration is related to the extent and spatial pattern of wind disturbance, and how these relationships vary between windstorms and thunderstorms. Methods We used salvage logging data after 16 storms that occurred in Finland between 2011 and 2021. We placed a total of 301 landscapes, each encompassing an area of 8024 ha, within the storm tracks and used regression models to test how wind disturbance extent, disturbance patch size, number of disturbance patches, and disturbance patch clustering were related to landscape configuration and storm characteristics. Results Increasing mean gap size and edge density, including permanent openings (e.g., lakes) and recent harvest gaps, increased disturbance extent, disturbance patch size, and number of disturbance patches. Conversely, increasing mean harvest gap size decreased disturbance patch clustering. Increasing wind speed had the largest contribution to increasing disturbance extent and number of disturbance patches, and decreasing disturbance patch clustering, with the magnitude of the effect varying between windstorms and thunderstorms. Conclusions The extent and spatial pattern of wind disturbances varied with landscape configuration and storm characteristics. Disturbance patches were larger in landscapes with large canopy gaps, resulting in a greater disturbance extent, exacerbated by increasing wind speed and thunderstorm development.

Funder

Research Council of Finland

Agence Nationale de la Recherche

Bundesministerium für Bildung und Forschung

Horizon 2020 Framework Programme

Natural Resources Institute Finland

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3