Analysing and predicting wildlife–vehicle collision hotspots for the Swiss road network

Author:

Laube PatrickORCID,Ratnaweera Nils,Wróbel Anna,Kaelin Ivo,Stephani Annette,Reifler-Baechtiger Martina,Graf Roland F.,Suter Stefan

Abstract

Abstract Context Wildlife–vehicle collisions (WVCs) are a significant threat for many species, cause financial loss and pose a serious risk to motorist safety. Objectives We used spatial data science on regional collision data from Switzerland with the objectives of identifying the key environmental collision risk factors and modelling WVC risk on a nationwide scale. Methods We used 43,000 collision records with roe deer, red deer, wild boar, and chamois from 2010 to 2015 for both midlands and mountainous landscape types. We compared a fixed-length road segmentation approach with segments based on Kernel Density Estimation, a data-driven segmentation method. The segments’ environmental properties were derived from land-cover geodata using novel neighbourhood operations. Multivariate logistic regression and random forest classifiers were used to identify and rank the relevant environmental factors and to predict collision risk in areas without collision data. Results The key factors for WVC hotspots are road sinuosity, and two composite factors for browsing/forage availability and traffic noise—a proxy for traffic flow. Our best models achieved sensitivities of 82.5% to 88.6%, with misclassifications of 20.14% and 27.03%, respectively. Our predictions were better in forested areas and revealed limitations in open landscape due to lack of up-to-date data on annual crop changes. Conclusions We illustrate the added value of using fine-grained land-cover data for WVC modelling, and show how such detailed information can be annotated to road segments using spatial neighbourhood functions. Finally, we recommend the inclusion of annual crop data for improving WVC modelling.

Funder

Swiss Federal Roads Office FEDRO

Swiss Federal Office of the Environment FOEN

Swiss Federal Railway SBB

ZHAW Zurich University of Applied Sciences

Publisher

Springer Science and Business Media LLC

Subject

Nature and Landscape Conservation,Ecology,Geography, Planning and Development

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3