Mass-flowering crops have a greater impact than semi-natural habitat on crop pollinators and pollen deposition

Author:

Shaw Rosalind F.ORCID,Phillips Benjamin B.ORCID,Doyle Toby,Pell Judith K.,Redhead John W.ORCID,Savage JoannaORCID,Woodcock Ben A.ORCID,Bullock James M.ORCID,Osborne Juliet L.ORCID

Abstract

Abstract Context Maximising insect pollination of mass-flowering crops is a widely-discussed approach to sustainable agriculture. Management actions can target landscape-scale semi-natural habitat, cropping patterns or field-scale features, but little is known about their relative effectiveness. Objective To test how landscape composition (area of mass-flowering crops and semi-natural habitat) and field-scale habitat (margins and hedges) affect pollinator species richness, abundance, and pollen deposition within crop fields. Methods We surveyed all flower visitors (Diptera, Coleoptera and Hymenoptera) in oilseed rape fields and related them to landscape composition and field features. Flower visitors were classified as bees, non-bee pollinators and brassica specialists. Total pollen deposition by individual taxa was estimated using single visit pollen deposition on stigmas combined with insect abundance. Results The area of mass-flowering crop had a negative effect on the species richness and abundance of bees in fields, but not other flower visitors. The area of semi-natural habitat in the surrounding landscape had a positive effect on bees, but was not as important as the area of mass-flowering crop. Taxonomic richness and abundance varied significantly between years for non-bee pollinators. Greater cover of mass-flowering crops surrounding fields had a negative effect on pollen deposition, but only when non-bee pollinator numbers were reduced. Conclusions Management choices that result in landscape homogenisation, such as large areas of mass-flowering crops, may reduce pollination services by reducing the numbers of bees visiting fields. Non-bee insect pollinators may buffer these landscape effects on pollen deposition, and management to support their populations should be considered.

Funder

Natural Environment Research Council

Publisher

Springer Science and Business Media LLC

Subject

Nature and Landscape Conservation,Ecology,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3