Uncovering habitat associations and thresholds—insights for managing breeding waterfowl in Eastern Canada

Author:

Frei Barbara,Cox Amelia R.,Brown Andrea,Dyson Matthew E.,Meyer Shawn,Hanson Alan,Hick Kristina,Gilliland Scott G.,Lepage Christine,Tétreault Mathieu,Roy Christian

Abstract

Abstract Context Understanding how habitat influences species abundance is crucial in developing ecologically sound wildlife conservation management plans. Exploring habitat associations and ecological thresholds in species’ responses allows for better conservation and management on a landscape-scale. Objectives This work aimed to identify habitat drivers and response thresholds of waterfowl and waterbird species’ densities in eastern Canada to support key landscape-level decisions for habitat conservation and wetland management. Methods We developed predictive abundance models for 17 species across eastern Canada from 2001 to 2015 using data from four regional surveys and identified areas where prioritizing enhancement of wetlands would increase the breeding density of five priority waterfowl species. Results Habitat associations and spatial abundance patterns varied across species, but most species responded strongly to forest composition, agriculture, and wetland features. Threshold effects occurred and varied among species, yet generally once 14% of a plot was covered in wetlands, positive effects of increased wetland diminished for most species. Our results allow for the targeting of investments in increasing wetland area along portions of eastern Canada that provide the best opportunities to increase breeding densities for priority waterfowl species. Conclusions Understanding species-habitat associations and response thresholds allows for landscape management and planning and prioritization of limited resources. We suggest that management and wetland enhancement efforts for waterfowl in eastern Canada should be guided by predictive models and response thresholds of key habitat attributes to best prioritize actions that will have the biggest positive impact on multiple species.

Funder

Environment & Climate Change Canada

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3