Predicting catchment-scale methane fluxes with multi-source remote sensing

Author:

Räsänen AleksiORCID,Manninen Terhikki,Korkiakoski Mika,Lohila Annalea,Virtanen Tarmo

Abstract

Abstract Context Spatial patterns of CH4 fluxes can be modeled with remotely sensed data representing land cover, soil moisture and topography. Spatially extensive CH4 flux measurements conducted with portable analyzers have not been previously upscaled with remote sensing. Objectives How well can the CH4 fluxes be predicted with plot-based vegetation measures and remote sensing? How does the predictive skill of the model change when using different combinations of predictor variables? Methods We measured CH4 fluxes in 279 plots in a 12.4 km2 peatland-forest-mosaic landscape in Pallas area, northern Finland in July 2019. We compared 20 different CH4 flux maps produced with vegetation field data and remote sensing data including Sentinel-1, Sentinel-2 and digital terrain model (DTM). Results The landscape acted as a net source of CH4 (253–502 µg m−2 h−1) and the proportion of source areas varied considerably between maps (12–50%). The amount of explained variance was high in CH4 regressions (59–76%, nRMSE 8–10%). Regressions including remote sensing predictors had better performance than regressions with plot-based vegetation predictors. The most important remote sensing predictors included VH-polarized Sentinel-1 features together with topographic wetness index and other DTM features. Spatial patterns were most accurately predicted when the landscape was divided into sinks and sources with remote sensing-based classifications, and the fluxes were modeled for sinks and sources separately. Conclusions CH4 fluxes can be predicted accurately with multi-source remote sensing in northern boreal peatland landscapes. High spatial resolution remote sensing-based maps constrain uncertainties related to CH4 fluxes and their spatial patterns.

Funder

Academy of Finland

University of Helsinki including Helsinki University Central Hospital

Publisher

Springer Science and Business Media LLC

Subject

Nature and Landscape Conservation,Ecology,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3