Moving beyond landscape resistance: considerations for the future of connectivity modelling and conservation science

Author:

Unnithan Kumar Siddharth,Turnbull Jonathon,Hartman Davies Oscar,Hodgetts Timothy,Cushman Samuel Alan

Abstract

AbstractLandscape connectivity, the extent to which a landscape facilitates the flow of ecological processes such as organism movement, has emerged as a central focus of landscape ecology and conservation science. Connectivity modelling now encompasses an enormous body of work across ecological theory and application. The dominant connectivity models in use today are based on the framework of ‘landscape resistance’, which is a way of measuring how landscape structure influences movement patterns. However, the simplistic assumptions and high degree of reductionism inherent to the landscape resistance paradigm severely limits the ability of connectivity algorithms to account for many fundamental aspects of animal movement, and thus greatly reduces the effectiveness and relevance of connectivity models for conservation theory and practice. In this paper, we first provide an overview of the development of connectivity modelling and resistance surfaces. We then discuss several key drivers of animal movement which are absent in resistance-based models, with a focus on spatiotemporal variation, human and interspecies interactions, and other context-dependent effects. We look at a range of empirical studies which highlight the strong impact these effects have on movement and connectivity predictions. But we also provide promising avenues of future research to address this: we discuss newly emerging technologies and interdisciplinary work, and look to developing methodologies, models and conversations which move beyond the limiting framework of landscape resistance, so that connectivity models can better reflect the complexities and richness of animal movement.

Funder

Oxford University

Pembroke College, University of Oxford

Publisher

Springer Science and Business Media LLC

Subject

Nature and Landscape Conservation,Ecology,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3