Random Frogs: using future climate and land-use scenarios to predict amphibian distribution change in the Upper Missouri River Basin

Author:

Campbell Kaitlyn S.ORCID,Baltensperger Andrew P.ORCID,Kerby Jacob L.

Abstract

Abstract Context Climate change and anthropogenic stressors have contributed to rapid declines in biodiversity worldwide, particularly for amphibians. Amphibians play important ecological roles, yet little is known about how distribution hotspots may change or how the environmental factors influence distribution patterns in the North American Great Plains. Objectives Ecological niche models improve understanding of biotic and abiotic factors associated with species' distributions and can highlight potential threats to species conservation. Here, we identify important predictors of amphibian distributions and predict how land use and climate change may alter amphibian distributions in the Upper Missouri River Basin. Methods We used publicly available occurrence data, 16 environmental and climatic predictors, and the machine-learning algorithm, Random Forests, to create spatially explicit distribution models for eight amphibian species. Models were scored to baseline conditions (2005) and two future climate-change/land-use scenarios to predict changes in amphibian distributions for 2060. Results Models were highly accurate and revealed more pronounced distribution changes under the intensive RCP8.5/CONUS A2 scenario compared to the moderate RCP6.0/CONUS B2 scenario. Both scenarios predicted gains for most eastern species (i.e., Blanchard’s cricket frogs, Plains leopard frogs, Woodhouse’s toads, and Great Plains toads) and declines for all western montane species. Overall, distribution changes were most influenced by climatic and geographic predictors, (e.g., mean temperature in the warmest quarter, precipitation, and elevation), and geography, versus anthropogenic land-use variables. Conclusions Changes in occurrence area varied by species and geography, however, high-elevation western species were more negatively impacted. Our distribution models provide a framework for conservation efforts to aid the persistence of amphibian species across a warming, agriculturally dominated landscape.

Funder

National Science Foundation ESPCoR WAFERx

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3