Genetic consequences of landscape features in two rear edge, highly fragmented metapopulations of a mediterranean conifer

Author:

Avanzi CamillaORCID,Vitali AlessandroORCID,Piovani Paolo,Spanu IlariaORCID,Urbinati CarloORCID,Vendramin Giovanni GiuseppeORCID,Garbarino MatteoORCID,Piotti AndreaORCID

Abstract

Abstract Context Habitat fragmentation is expected to erode genetic diversity, which instead needs to be preserved for promoting species adaptation to a changing climate. As this expectation has found mixed support in forest trees, consistent results on the genetic consequences of fragmentation requires adequately replicated experimental designs, as well as an explicit assessment of which landscape features, if any, could mitigate its detrimental effects. Objective Evaluating the role of several landscape attributes in buffering the detrimental effects of fragmentation in two metapopulations of silver fir. Methods We genotyped 904 silver fir (Abies alba Mill.) trees from 18 local populations forming two metapopulations comparable for size and extension in the Apennines, a Mediterranean mountain range. We identified the signatures left by the fragmentation process on the genetic features of silver fir local populations. After removing potentially confounding effects due to different evolutionary histories, we used a multivariate approach for testing the relative effect of demographic, geographic, environmental and topographic factors on genetic features of both metapopulations. Results We found comparable signals of the habitat fragmentation impact on the genetic diversity and structure of both investigated metapopulations. Fragmentation effects were less pronounced in the largest local populations (but not the least isolated), located on gentler slopes with higher soil water availability and lower heat exposure. Conclusions Our results suggest the existence of a set of demographic and environmental factors that could have coherently buffered the detrimental genetic effects of fragmentation in both metapopulations. These findings could be useful to plan landscape restoration for the evolutionary rescue of mixed forests that once characterized Mediterranean mountain ecosystems.

Funder

Rural Development Programme of the Abruzzo Region

Gran Sasso–Monti della Laga National Park

Tuscan-Emilian Apennine National Park

Università Politecnica delle Marche

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3