Ecological displacement in a Rocky Mountain hybrid zone informs management of North American martens (Martes)

Author:

Colella Jocelyn P.ORCID,Freymueller Nicholas A.ORCID,Land Danielle M.ORCID,Wiens Ben J.ORCID,Stone Karen D.,Cook Joseph A.ORCID

Abstract

Abstract Context Parapatric sister species are ideal for tests of ecological interactions. Pacific (Martes caurina) and American pine (M. americana) martens are economically and culturally valuable furbearers that hybridize in the north-central Rocky Mountains. Despite preliminary evidence of biased introgression, the hybrid zone has been geographically stable for 70 years, but interspecific ecological interactions have yet to be examined in detail. Objectives We test whether ecological interactions may influence the outcome of hybridization in this system. To that end, we estimate the fundamental niche of each species and gauge how suitability landscapes change when the two species are in contact. Methods We genotyped > 400 martens from the Rocky Mountain hybrid zone to diagnose individuals to species-level and identify putative hybrids. We then built range-wide ecological niche models for each species, excluding individuals in the hybrid zone, to approximate their respective fundamental niches. Those models were projected into the hybrid zone and compared with niche models trained on individuals within the hybrid zone to assess how niche dynamics change when the species are in sympatry. Results The fundamental niche of each species differed significantly, while the hybrid zone was equally suitable for both. Niches of each species based on models built within the hybrid zone showed that Pacific martens utilized significantly less suitable habitat than expected based on their range-wide fundamental niche, suggesting that species interactions shape local hybridization. We detected few admixed individuals (12%), with no evidence of directional (sex or species) biases. Interstate-90 further acts as a major dispersal barrier. Conclusions North American martens are currently managed as a single species by some state agencies, yet significant ecological and genetic differences indicate they should be managed separately. The observed ecological displacement of Pacific martens by American pine martens may partially explain the mixed success of historical, mixed-species wildlife translocations and cautions such translocations in the future. Landscape-scale consideration of ecological dynamics, in addition to molecular compatibility, will be essential to the success of future translocations.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3