Integrating existing data to assess the risk of an expanding land use change on mammals

Author:

Rich Lindsey N.ORCID,Medel Ivan D.,Bangen Sara,Wengert Greta M.,Toenies Matthew,Tucker Jody M.,Gabriel Mourad W.,Davis Courtney L.ORCID

Abstract

Abstract Context Land-use change, including agricultural expansion, is one of the major drivers of biodiversity loss globally. Given the rapid pace of land-use change, data-driven, strategic, and dynamic conservation planning is imperative. Objectives We present an exemplar application of using existing data to inform conservation planning. Specifically, we developed a systematic approach for identifying areas of conservation concern due to cannabis cultivation in California, USA. Methods We used three existing datasets: (1) camera trap data from ten projects (n = 1186); (2) the locations of cannabis cultivation sites eradicated by law enforcement (n = 834); and (3) the locations of cultivation licenses (n = 4366). We analyzed this data using multi-species occupancy models to estimate the occupancy and richness of 30 species, and maximum entropy models to estimate the risk of unlicensed and trespass cultivation. We then identified areas of overlap and determined the percent of suitable habitat potentially impacted by cannabis cultivation. Results Cannabis cultivation was estimated to overlap 39–74% of suitable habitat for special status species. Private land cultivation tended to have a larger influence on generalist species whereas trespass cultivation had the largest potential influence on fisher (Pekania pennanti), a special status species. Conclusions Our results can be used to prioritize eradication, restoration, and remediation activities; to target mitigation efforts; and to guide the placement of new, licensed cultivation. Our approach demonstrates the utility of aggregating existing biological and socioeconomic data to inform conservation planning and is broadly applicable to other data sources and ecological stressors.

Publisher

Springer Science and Business Media LLC

Subject

Nature and Landscape Conservation,Ecology,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3