Scarcity and quality risks for future global urban water supply

Author:

Liu Zhifeng,Ying Jiahe,He Chunyang,Guan Dongjie,Pan Xinhao,Dai Yihua,Gong Binghua,He Keren,Lv Caifeng,Wang Xin,Lin Jingyu,Liu Yanxu,Bryan Brett A.

Abstract

Abstract Context Supply of freshwater to the world’s cities is increasingly affected by human pressures and climate change. Understanding the effects of human pressures and climate change on global urban water scarcity and quality risks in an integrated way is important. Objectives The objective of this study is to assess the scarcity and quality risks to water security for 304 large cities (population > 1 million) across the world for 2015 and 2050. Methods We assessed the water scarcity according to water demand and availability, and evaluated the quality of water supply in terms of the population density, cropland fertilization, and landscape patterns in source watersheds. In addition, the impacts of human pressures and climate change on urban water risks were quantified using contribution analysis. Results We found that about 90% of these cities faced water risks in 2015. The number of cities facing quality risk was about three times the number of cities facing scarcity risk, and nearly a quarter faced dual risks. From 2015 to 2050, 88.8–99.7% of cities were projected to face rising water risks with about one-third facing dual risks by 2050. Increase in water demand was the main cause of rising scarcity risk; growth in population and crop fertilization in source watersheds were the main reasons for rising quality risk. Conclusions There is an urgent need to promote landscape conservation of urban water source areas, implement sustainable urban water planning and governance, improve water supply infrastructure, and refine ecological compensation regimes to achieve global urban water security.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3