Extending vegetation site data and ensemble models to predict patterns of foliage cover and species richness for plant functional groups

Author:

McNellie Megan J.ORCID,Oliver IanORCID,Ferrier SimonORCID,Newell Graeme,Manion Glenn,Griffioen Peter,White Matt,Koen Terry,Somerville Michael,Gibbons PhilipORCID

Abstract

Abstract Context Ensembles of artificial neural network models can be trained to predict the continuous characteristics of vegetation such as the foliage cover and species richness of different plant functional groups. Objectives Our first objective was to synthesise existing site-based observations of native plant species to quantify summed percentage foliage cover and species richness within four functional groups and in totality. Secondly, we generated spatially-explicit, continuous, landscape-scale models of these functional groups, accompanied by maps of the model residuals to show uncertainty. Methods Using a case study from New South Wales, Australia, we aggregated floristic observations from 6806 sites into four common plant growth forms (trees, shrubs, grasses and forbs) representing four different functional groups. We coupled these response data with spatially-complete surfaces describing environmental predictors and predictors that reflect landscape-scale disturbance. We predicted the distribution of foliage cover and species richness of these four plant functional groups over 1.5 million hectares. Importantly, we display spatially explicit model residuals so that end-users have a tangible and transparent means of assessing model uncertainty. Results Models of richness generally performed well (R2 0.43–0.63), whereas models of cover were more variable (R2 0.12–0.69). RMSD ranged from 1.42 (tree richness) to 29.86 (total native cover). MAE ranged from 1.0 (tree richness) to 20.73 (total native foliage cover). Conclusions Continuous maps of vegetation attributes can add considerable value to existing maps and models of discrete vegetation classes and provide ecologically informative data to support better decisions across multiple spatial scales.

Publisher

Springer Science and Business Media LLC

Subject

Nature and Landscape Conservation,Ecology,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3