Getting lost in the matrix? On how the characteristics and arrangement of linear landscape elements influence ecological connectivity

Author:

Anderson CalumORCID,Travis Justin M. J.,Palmer Stephen C. F.,Crick Humphrey Q. P.,Lancaster Lesley T.

Abstract

Abstract Context Linear landscape elements (LLEs) such as ditches and hedgerows can increase the ecological connectivity of habitat embedded within agricultural areas by acting as corridors for animal movement. However, we lack knowledge on how the spatial arrangement of LLEs influence dispersal, impeding our ability to offer robust advice on how best to add new LLEs to improve connectivity. Objectives To examine how the width and spatial orientations of LLEs composing an intersecting network might influence connectivity across landscapes. Methods We used an individual-based dispersal model to simulate the stochastic movement of small organisms through stylised LLEs of different characteristics. Landscapes were composed of two habitat patches separated by a grid-like network of LLEs composed of two types: (1) connecting-edges (touching patches on either end) and (2) transecting-edges (running perpendicular to connecting-edges). By altering numbers and widths of each LLE type we sought to understand the effect of these variables on inter-patch dispersal rates. Results Increasing the number or width of connecting-edges improved connectivity but, conversely, increasing numbers or widths of transecting-edges reduced it. The greater freedom of movement offered by increasing numbers of transecting-edges may have inhibited connectivity, as individuals with limited perceptual-range were more likely to become trapped in complex networks and thus fail to navigate to suitable habitat patches. Conclusions Orientation of LLEs with respect to landscape resources greatly affects their impact on connectivity. The addition of LLEs to landscapes may decrease their connectivity for small, flightless species if they do not directly channel dispersers toward landscape resources.

Funder

Natural Environment Research Council

Natural England

Publisher

Springer Science and Business Media LLC

Subject

Nature and Landscape Conservation,Ecology,Geography, Planning and Development

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3