Graph-theoretic modeling reveals connectivity hotspots for herbivorous reef fishes in a restored tropical island system

Author:

Peterson Emily A.ORCID,Stuart Courtney E.ORCID,Pittman Simon J.ORCID,Benkwitt Cassandra E.ORCID,Graham Nicholas A. J.ORCID,Malhi YadvinderORCID,Salmon Teva,Stoll BenoitORCID,Purkis Sam J.ORCID,Wedding Lisa M.ORCID

Abstract

Abstract Context Seascape connectivity refers to how the spatial configuration of marine habitats facilitates or hinders the movement of organisms, nutrients, materials or energy. Predicting and ranking potential connectivity among habitat patches for coral reef fishes helps to understand how reef fishes could utilize and connect multiple habitat types through the flow of nutrients, energy and biomass across the wider seascape during foraging movements. Objectives To advance a spatially explicit understanding of connectivity linkages within a tropical atoll system by modeling, mapping and quantifying potential seascape connectivity for two locally abundant herbivorous reef fish species, the parrotfish, Chlorurus spilurus (pahoro hohoni or pa’ati pa’apa’a auahi), and the surgeonfish, Acanthurus triostegus (manini). Methods We applied a two-step modeling approach by first mapping habitat suitability for the focal species. A graph-theoretic modeling technique was then applied to model and measure the contribution of benthic habitat patches to species-specific potential connectivity within the seascape. Results Habitat suitability was higher and less fragmented for C. spilurus than for A. triostegus. Potential ecological connectivity estimates for C. spilurus were higher across the entire seascape, with differences between species likely driven by local-scale benthic habitat patch configuration and species home ranges. Hotspots of ecological connectivity across the atoll were mapped for both species. Conclusions Despite advances in the application of graph-theoretic techniques in the coastal environment, few marine conservation and restoration measures currently integrate spatial information on ecological connectivity. This two-step spatial modeling approach holds great potential for rapid application of connectivity modeling at multiple spatial scales, which may predict ecological responses to conservation actions including active habitat restoration.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3