Abstract
AbstractWe consider a nonnegative self-adjoint operator L on $$L^2(X)$$
L
2
(
X
)
, where $$X\subseteq {{\mathbb {R}}}^d$$
X
⊆
R
d
. Under certain assumptions, we prove atomic characterizations of the Hardy space $$\begin{aligned} H^1(L) = \left\{ f\in L^1(X) \ : \ \left\| \sup _{t>0} \left| \exp (-tL)f \right| \right\| _{L^1(X)}<\infty \right\} . \end{aligned}$$
H
1
(
L
)
=
f
∈
L
1
(
X
)
:
sup
t
>
0
exp
(
-
t
L
)
f
L
1
(
X
)
<
∞
.
We state simple conditions, such that $$H^1(L)$$
H
1
(
L
)
is characterized by atoms being either the classical atoms on $$X\subseteq {\mathbb {R}^d}$$
X
⊆
R
d
or local atoms of the form $$|Q|^{-1}\chi _Q$$
|
Q
|
-
1
χ
Q
, where $$Q\subseteq X$$
Q
⊆
X
is a cube (or cuboid). One of our main motivation is to study multidimensional operators related to orthogonal expansions. We prove that if two operators $$L_1, L_2$$
L
1
,
L
2
satisfy the assumptions of our theorem, then the sum $$L_1 + L_2$$
L
1
+
L
2
also does. As a consequence, we give atomic characterizations for multidimensional Bessel, Laguerre, and Schrödinger operators. As a by-product, under the same assumptions, we characterize $$H^1(L)$$
H
1
(
L
)
also by the maximal operator related to the subordinate semigroup $$\exp (-tL^\nu )$$
exp
(
-
t
L
ν
)
, where $$\nu \in (0,1)$$
ν
∈
(
0
,
1
)
.
Publisher
Springer Science and Business Media LLC
Reference25 articles.
1. Auscher, P., Duong, X.T., McIntosh, A.: Boundedness of banach space valued singular integral operators and hardy spaces. Unpublished preprint (2005)
2. Betancor, J.J., Dziubański, J., Torrea, J.L.: On Hardy spaces associated with Bessel operators. J. Anal. Math. 107, 195–219 (2009)
3. Bochner, S.: Diffusion equation and stochastic processes. Proc. Nat. Acad. Sci. USA 35, 368–370 (1949)
4. Coifman, R.R.: A real variable characterization of $$H^{p}$$. Studia Math. 51, 269–274 (1974)
5. Czaja, W., Zienkiewicz, J.: Atomic characterization of the Hardy space $${{H^1}_{L}}({\mathbb{R}})$$ of one-dimensional Schrödinger operators with nonnegative potentials. Proc. Amer. Math. Soc. 136(1), 89–94 (2008). (electronic)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献