Abstract
AbstractWe address a detailed study of the convexity notions that arise in the study of weak* lower semicontinuity of supremal functionals, as well as those arising by the $$L^p$$
L
p
-approximation, as $$p \rightarrow +\infty $$
p
→
+
∞
of such functionals. Our quest is motivated by the knowledge we have on the analogous integral functionals and aims at establishing a solid groundwork underlying further research in the $$L^\infty $$
L
∞
context.
Funder
Gruppo Nazionale per l’Analisi Matematica, la Probabilitá e le loro Applicazioni
Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa
Università degli Studi di Roma La Sapienza
Publisher
Springer Science and Business Media LLC
Reference81 articles.
1. Abdullayev, F., Bocea, M., Mihăilescu, M.: A variational characterization of the effective yield set for ionic polycrystals. Appl. Math. Optim. 69(3), 487–503 (2014)
2. Acerbi, E., Buttazzo, G., Prinari, F.: The class of functionals which can be represented by a supremum. J. Convex Anal. 9(1), 225–236 (2002)
3. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, p. xviii+434. Clarendon Press, Oxford (2000)
4. Ansini, N., Prinari, F.: Power-law approximation under differential constraints. SIAM J. Math. Anal. 46(2), 1085–1115 (2014)
5. Ansini, N., Prinari, F.: On the lower semicontinuity of supremal functional under differential constraints. ESAIM Control Optim. Calc. Var. 21(4), 1053–1075 (2015)