Abstract
AbstractLet $$\textsf{Hom}^{0}(\Gamma ,G)$$
Hom
0
(
Γ
,
G
)
be the connected component of the identity of the variety of representations of a finitely generated nilpotent group $$\Gamma $$
Γ
into a connected reductive complex affine algebraic group G. We determine the mixed Hodge structure on the representation variety $$\textsf{Hom}^{0}(\Gamma ,G)$$
Hom
0
(
Γ
,
G
)
and on the character variety $$\textsf{Hom}^{0}(\Gamma ,G)/\!\!/G$$
Hom
0
(
Γ
,
G
)
/
/
G
. We obtain explicit formulae (both closed and recursive) for the mixed Hodge polynomial of these representation and character varieties.
Publisher
Springer Science and Business Media LLC
Reference38 articles.
1. Adem, A., Cohen, F.R., Gómez, J.: Commuting elements in central products of special unitary groups. Proc. Edinb. Math. Soc. (2) 56(1), 1–12 (2013)
2. Baird, T.J.: The moduli space of flat G-bundles over a nonorientable surface. Ph.D. Thesis-University of Toronto, Canada, p 122 (2008). ISBN: 978-0494-39857-9, ProQuest LLC
3. Baird, T.J.: Cohomology of the space of commuting $$n$$-tuples in a compact Lie group. Algebraic Geometric Topol. 7, 737–754 (2007)
4. Behrend, K., Bryan, J., Szendröi, B.: Motivic degree zero Donaldson–Thomas invariants. Invent. Math. 192(1), 111–160 (2013)
5. Bergeron, M.: The topology of nilpotent representations in reductive groups and their maximal compact subgroups. Geom. Topol. 19(3), 1383–1407 (2015)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献