$$\omega ^\omega $$-Base and infinite-dimensional compact sets in locally convex spaces

Author:

Banakh Taras,Ka̧kol Jerzy,Schürz Johannes PhilippORCID

Abstract

AbstractA locally convex space (lcs) E is said to have an $$\omega ^{\omega }$$ ω ω -base if E has a neighborhood base $$\{U_{\alpha }:\alpha \in \omega ^\omega \}$$ { U α : α ω ω } at zero such that $$U_{\beta }\subseteq U_{\alpha }$$ U β U α for all $$\alpha \le \beta $$ α β . The class of lcs with an $$\omega ^{\omega }$$ ω ω -base is large, among others contains all (LM)-spaces (hence (LF)-spaces), strong duals of distinguished Fréchet lcs (hence spaces of distributions $$D^{\prime }(\Omega )$$ D ( Ω ) ). A remarkable result of Cascales-Orihuela states that every compact set in an lcs with an $$\omega ^{\omega }$$ ω ω -base is metrizable. Our main result shows that every uncountable-dimensional lcs with an $$\omega ^{\omega }$$ ω ω -base contains an infinite-dimensional metrizable compact subset. On the other hand, the countable-dimensional vector space $$\varphi $$ φ endowed with the finest locally convex topology has an $$\omega ^\omega $$ ω ω -base but contains no infinite-dimensional compact subsets. It turns out that $$\varphi $$ φ is a unique infinite-dimensional locally convex space which is a $$k_{\mathbb {R}}$$ k R -space containing no infinite-dimensional compact subsets. Applications to spaces $$C_{p}(X)$$ C p ( X ) are provided.

Funder

GACR

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Reference24 articles.

1. Arkhangel’skii, A.V.: $$C_p$$-theory. In: Hušek, M., Van Mill, J. (eds.) Recent Progress in General Topology, pp. 1–56. Elsevier, Oxford (1992)

2. Banakh, T.: On linear topological spaces (linearly) homeomorphic to $${\mathbb{R}}^\infty $$. Mat. Stud. 9, 99–101 (1998)

3. Banakh, T., Gabriyelyan, S.: On the $$C_k$$-stable closure of the class of (separable) metrizable spaces. Monatshefte Math. 180, 39–64 (2016)

4. Banakh, T.: Topological spaces with an $$\omega ^{\omega }$$-base. Diss. Math. 538, 1–141 (2019)

5. Banakh, T., Leiderman, A.: $$\omega ^\omega $$-Dominated function spaces and $$\omega ^\omega $$-bases in free objects of topological algebra. Topol. Appl. 241, 203–241 (2018)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Feral dual spaces and (strongly) distinguished spaces C(X);Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2023-04-03

2. Classifying Topologies through G-Bases;Axioms;2022-12-19

3. Sub-posets in ω and the strong Pytkeev⁎ property;Topology and its Applications;2021-08

4. Distinguished Property in Tensor Products and Weak* Dual Spaces;Axioms;2021-07-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3