Author:
Bianchi Francesca,Brasco Lorenzo,Sk Firoj,Zagati Anna Chiara
Abstract
AbstractWe prove a characterization of Hardy’s inequality in Sobolev–Slobodeckiĭ spaces in terms of positive local weak supersolutions of the relevant Euler-Lagrange equation. This extends previous results by Ancona Kinnunen & Korte for standard Sobolev spaces. The proof is based on variational methods.
Funder
Università degli Studi di Parma
Publisher
Springer Science and Business Media LLC
Reference13 articles.
1. Ancona, A.: On strong barriers and inequality of Hardy for domains in $${\mathbb{R} }^n$$. J. Lond. Math. Soc. 34, 274–290 (1986)
2. Bianchi, F., Brasco, L., Zagati, A.C.: On the sharp Hardy inequality in Sobolev-Slobodeckiĭ spaces. preprint (2022). arXiv:2209.03012
3. Brasco, L., Franzina, G.: Convexity properties of Dirichlet integrals and Picone-type inequalities. Kodai Math. J. 37, 769–799 (2014)
4. Brasco, L., Squassina, M., Yang, Y.: Global compactness results for nonlocal problems. Discrete Contin. Dyn. Syst. Ser. S 11, 391–424 (2018)
5. Brézis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88, 486–490 (1983)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献