Author:
Magnani Valentino,Tiberio Daniele
Abstract
AbstractIn the infinite dimensional Heisenberg group, we construct a left invariant weak Riemannian metric that gives a degenerate geodesic distance. The same construction yields a degenerate sub-Riemannian distance. We show how the standard notion of sectional curvature adapts to our framework, but it cannot be defined everywhere and it is unbounded on suitable sequences of planes. The vanishing of the distance precisely occurs along this sequence of planes, so that the degenerate Riemannian distance appears in connection with an unbounded sectional curvature. In the 2005 paper by Michor and Mumford, this phenomenon was first observed in some specific Fréchet manifolds.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献