Comparative analysis of soft-error sensitivity in LU decomposition algorithms on diverse GPUs

Author:

Leon German,Badia Jose M.,Belloch Jose A.,Lindoso Almudena,Entrena Luis

Abstract

AbstractGraphics processing units (GPUs) have become integral to embedded systems and supercomputing centres due to their large memory, cutting-edge technology and high performance per watt. However, their susceptibility to transient errors requires a comprehensive analysis of error sensitivity, as well as the development of error mitigation techniques and fault-tolerant algorithms. This study focuses on evaluating the soft-error sensitivity of two distinct versions of LU decomposition algorithms implemented on two very different GPUs—a low-power SoC embedded GPU and a high-performance massively parallel GPU. Through extensive fault injection campaigns on both GPUs, we examine the vulnerability of the algorithms, identify error causes, and determine critical code components requiring enhanced protection. The experiments reveal that most single bit flip fault injections in the instruction results lead to erroneous outcomes or unrecoverable errors. Notably, efficient GPU resource utilisation can increase the number of masked errors, thereby enhancing error resilience. Additionally, while different parts of the code exhibit similar error occurrence types and rates, the propagation of errors to elements within the result matrix differs significantly.

Funder

Ministerio de Ciencia e Innovación

Comunidad de Madrid

Universitat Jaume I

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring the Behavior of Soft-Error Rate Reduction Algorithms in Digital Circuits;2024 International Conference on Optimization Computing and Wireless Communication (ICOCWC);2024-01-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3