Hybrid deep transfer learning architecture for industrial fault diagnosis using Hilbert transform and DCNN–LSTM

Author:

Zabin Mahe,Choi Ho-JinORCID,Uddin Jia

Abstract

AbstractEarly-stage fault detection has become an indispensable part of modern industry to prevent potential hazards or sudden hindrances to the production process. With the advent of deep learning (DL) applications in several fields, DL models have been used to classify faults in specific environments. Uniform texture extraction has been performed using transformed-signal processing techniques and deep transfer learning (DTL) architectures in a few studies. Traditional signal processing techniques encounter difficulties in extracting distinct fault features due to the nonlinear and non-stationary nature of the time-series fault data. In this paper, a hybrid DTL architecture comprising a deep convolutional neural network and long short-term memory layers for extracting both temporal and spatial features enhanced by Hilbert transform 2D images is presented. Three standard audio sound fault datasets comprising the malfunctioning industrial machine investigation and inspection dataset, toy anomaly detection in machine operating sounds dataset, and machinery failure prevention technology bearing vibration fault dataset with various loads and noisy environments were utilized in the experimental evaluation. The proposed model with an input size of 32 × 32 achieved an average F1 score of 0.998 on the tested datasets. The implementation of transfer learning using the three benchmark datasets resulted in the highest accuracy of the proposed model and over fivefold reduction in the training epochs. In addition, the proposed model outperformed the state-of-art models in accuracy in various environments.

Funder

Korea Electric Power Corporation

Publisher

Springer Science and Business Media LLC

Subject

Hardware and Architecture,Information Systems,Theoretical Computer Science,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3