Extending the VEF traces framework to model data center network workloads

Author:

Andújar Francisco J.ORCID,Sánchez de la Rosa Miguel,Escudero-Sahuquillo Jesus,Sánchez José L.

Abstract

AbstractData centers are a fundamental infrastructure in the Big-Data era, where applications and services demand a high amount of data and minimum response times. The interconnection network is an essential subsystem in the data center, as it must guarantee high communication bandwidth and low latency to the communication operations of applications, otherwise becoming the system bottleneck. Simulation is widely used to model the network functionality and to evaluate its performance under specific workloads. Apart from the network modeling, it is essential to characterize the end-nodes communication pattern, which will help identify bottlenecks and flaws in the network architecture. In previous works, we proposed the VEF traces framework: a set of tools to capture communication traffic of MPI-based applications and generate traffic traces used to feed network simulator tools. In this paper, we extend the VEF traces framework with new communication workloads such as deep-learning training applications and online data-intensive workloads.

Funder

Ministerio de Ciencia e Innovación

Universidad de Valladolid

Publisher

Springer Science and Business Media LLC

Subject

Hardware and Architecture,Information Systems,Theoretical Computer Science,Software

Reference28 articles.

1. Congdon P (2018) IEEE 802 Nendica report: the lossless network for data centers. IEEE-SA industry connections white paper. https://mentor.ieee.org/802.1/dcn/18/1-18-0042-00-ICne.pdf

2. Varga A OMNeT++ User Manual. OpenSim Ltd. Accessed 15 Feb 2022. http://omnetpp.org/doc/omnetpp/manual/usman.html

3. Riley GF, Henderson TR (2010) The ns-3 network simulator. In: Wehrle K, Güneş M, Gross J (eds) Modeling and tools for network simulation. Springer, Berlin, pp 15–34

4. The Structural Simulation Toolkit, Sandia National Laboratories, USA, 2015. Accessed 15 Feb 2022. http://sst-simulator.org

5. Mubarak M, Carothers CD, Ross RB, Carns P (2017) Enabling parallel simulation of large-scale HPC network systems. IEEE Trans Parallel Distrib Syst 28(1):87–100

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A New Mechanism to Identify Congesting Packets in High-Performance Interconnection Networks;2024 IEEE Symposium on High-Performance Interconnects (HOTI);2024-08-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3