Parallel construction of Random Forest on GPU
Author:
Publisher
Springer Science and Business Media LLC
Subject
Hardware and Architecture,Information Systems,Theoretical Computer Science,Software
Link
https://link.springer.com/content/pdf/10.1007/s11227-021-04290-6.pdf
Reference35 articles.
1. Kirk DB, Hwu WW (2010) Programming massive parallel processors. Elsevier Inc., eBook ISBN: 9780123814739
2. Zheng R, Hu Q, Jin H (2018) GPUPerfML: a performance analytical model based on decision tree for GPU architectures. In: The Proceedings of the 20th International Conference on High Performance Computing and Communications, IEEE. https://doi.org/10.1109/HPCC/SmartCity/DSS.2018.00110
3. Senagi K, Jouandeau N (2018) Confidence in Random Forest for performance optimization. In: Bramer M, Petridis M (eds) Artificial intelligence. XXXV SGAI 2018. Lecture notes in computer science, vol 11311. Springer, Cham. https://doi.org/10.1007/978-3-030-04191-5_31
4. Vouzis PD, Sahinidis NV (2011) GPU-BLAST: using graphics processors to accelerate protein sequence alignment. J Bioinf (Oxford England) 27(2):182–188. https://doi.org/10.1093/2Fbioinformatics/2Fbtq644
5. Breiman L (2001) Random Forests. Mach Learn 45(1):5–32. https://doi.org/10.1023/A:1010933404324
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Prediction of white blood cell count during exercise: a comparison between standalone and hybrid intelligent algorithms;Scientific Reports;2024-09-05
2. A Comparative Assessment of Decision Tree Algorithms for Index of Sediment Connectivity Modelling;Water Resources Management;2024-02-10
3. Deep Convolutional Neural Network Algorithm Based on Im2Col and Non-Local Mean Filter;2023 4th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT);2023-06-16
4. Determination of optimum intensity and duration of exercise based on the immune system response using a machine-learning model;Scientific Reports;2023-05-22
5. DNN Is Not All You Need: Parallelizing Non-neural ML Algorithms on Ultra-low-power IoT Processors;ACM Transactions on Embedded Computing Systems;2023-04-19
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3