Exploring the performance and portability of the k-means algorithm on SYCL across CPU and GPU architectures

Author:

Faqir-Rhazoui Youssef,García Carlos

Abstract

AbstractThe aim of SYCL is to reduce the gap between the performance and code portability of the main accelerators used in HPC, such as multi-vendor CPUs, GPUs, and FPGAs. To evaluate SYCL’s performance portability, this paper uses the k-means algorithm as a case study. The k-means algorithm is simple to code but can be complex to optimize. In this research, we compare our developed SYCL version with the most efficient implementations of CUDA and OpenMP. Our resulting SYCL code can potentially run on multi-vendor CPUs and GPUs. Additionally, we have created a hand-tuned SYCL variation that is optimized for specific device architectures (CPU, NVIDIA GPU, and Intel GPU) to evaluate the performance difference between a standard version and an optimized one. The results show that SYCL outperforms Intel GPUs and CPUs compared to the state-of-the-art He-Vialle version, while on NVIDIA GPUs SYCL offers equivalent performance compared to its native CUDA implementation.

Funder

Ministerio de Economía y Competitividad

Comunidad de Madrid

Universidad Complutense de Madrid

Publisher

Springer Science and Business Media LLC

Subject

Hardware and Architecture,Information Systems,Theoretical Computer Science,Software

Reference38 articles.

1. Hwu W-m, Patel S (2018) Accelerator architectures -a 10-year retrospective. IEEE Micro 38(6):56–62. https://doi.org/10.1109/MM.2018.2877839

2. Kirk DB, W-mW Hwu (2010) Programming massively parallel processors: a hands-on approach, 1st edn. Morgan Kaufmann Publishers Inc., San Francisco

3. Stone JE, Gohara D, Shi G (2010) Opencl: a parallel programming standard for heterogeneous computing systems. Comput Sci Eng 12(3):66–73. https://doi.org/10.1109/MCSE.2010.69

4. Munshi A, Gaster B, Mattson TG, Ginsburg D (2011) OpenCL programming guide, 1st edn. Pearson Education, Boston

5. Khronos SYCL working group: (2023) SYCL specification. https://registry.khronos.org/SYCL/

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Assessing opportunities of SYCL for biological sequence alignment on GPU-based systems;The Journal of Supercomputing;2024-02-19

2. Comparing Performance and Portability Between CUDA and SYCL for Protein Database Search on NVIDIA, AMD, and Intel GPUs;2023 IEEE 35th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD);2023-10-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3